
When All Options Are Wrong: Evaluating Large
Language Model Robustness with Incorrect

Multiple-Choice Options

Gracjan Góral1,2,3∗ Emilia Wiśnios1∗
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Abstract

The ability of Large Language Models (LLMs) to identify multiple-choice ques-
tions that lack a correct answer is a crucial aspect of educational assessment quality
and an indicator of their critical thinking skills. This paper investigates the per-
formance of various LLMs on such questions, revealing that models experience,
on average, a 55% reduction in performance when faced with questions lacking
a correct answer. The study also highlights that Llama 3.1-405B demonstrates
a notable capacity to detect the absence of a valid answer, even when explicitly
instructed to choose one. The findings emphasize the need for LLMs to prioritize
critical thinking over blind adherence to instructions and caution against their
use in educational settings where questions with incorrect answers might lead to
inaccurate evaluations. This research establishes a benchmark for assessing critical
thinking in LLMs and underscores the ongoing need for model alignment to ensure
their responsible and effective use in educational and other critical domains2.

1 Introduction

Large language models have demonstrated their versatility in various domains, from code generation
[21, 2, 11, 29, 36] and mathematical problem-solving [1, 16, 52, 5], to document summarization
[20, 24, 45]. These models have also found applications in education, including automated grading
[23, 25, 50], personalized tutoring [35, 33], and test generation [9, 54, 15, 4, 26].

Multiple-choice questions (MCQs) are a cornerstone of educational assessment, enabling large-scale
evaluation of student knowledge, streamlined grading procedures, and the potential for automated
evaluation. MCQs provide a standardized approach to student assessment, mitigating the subjectivity
inherent in essay-based or open-ended questions [38].

While multiple-choice questions offer a standardized and efficient way to assess student knowledge,
their effectiveness depends on having valid answers. If questions lack a correct option, it can lead to
a cascade of negative consequences, including student frustration, confusion, inaccurate evaluation of
their understanding, hindered learning, and the formation of misconceptions about the subject matter.

In this study, we investigate the 0-shot capacity of LLMs to discern when a multiple-choice question
lacks a correct answer. This seemingly straightforward ability has profound implications. If LLMs
can identify such problematic questions, it presents a mutually beneficial scenario: educators receive
valuable feedback to refine their assessments, and students experience a fairer and more effective
learning environment.
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Beyond its impact on assessment quality, this capability hints at a deeper level of reasoning within
the LLM, transcending mere pattern matching. It suggests a robust comprehension of the subject
matter, empowering the model to critically evaluate options and detect inconsistencies. Furthermore,
it opens avenues for potential error detection and correction in datasets and educational materials,
ensuring accuracy in critical contexts.

Previous attempts to address this challenge have involved workarounds such as incorporating a
None of the above option [22, 46] or transforming closed-ended questions into open-ended ones
[32]. Our approach diverges from these, operating under the premise that most test creators do not
intentionally include questions without correct answers. Thus, we examine whether LLMs can defy
instructions and identify the absence of a correct answer. We perceive this not solely as an evaluation
of educational proficiency but also as an insight into the LLM’s capacity for critical thinking—"Active,
persistent and careful consideration of any belief or supposed form of knowledge in the light of the
grounds that support it, and the further conclusions to which it tends." [13]

To investigate this phenomenon, we devised a series of challenges encompassing basic arithmetic
and general knowledge questions and evaluated the performance of various state-of-the-art language
models, including GPT-4o, Gemini [44], and Llama 3.1 [14]. We further probed their capabilities
by incorporating additional prompts alongside the questions. The prompt The answer may not be
in the options aimed to explicitly signal the possibility of no valid options, while You must choose
exactly one option sought to increase the difficulty by forcing a choice even in the absence of a
correct answer. Our results revealed a significant performance gap between questions with one correct
answer and those with no correct answer. For instance, GPT-4o and Gemini 1.5 Flash exhibited a
performance decline of over 50% on simple arithmetic and MMLU questions when all answers were
incorrect. While most models struggled with these trick questions, often succumbing to the pressure
to select an answer despite the prompts, Llama-3.1-405B demonstrated a greater capacity for critical
thinking, successfully identifying the absence of a valid answer in many cases, even when faced with
misleading prompts.

Our findings carry implications beyond the educational context. They suggest that LLMs should
not blindly adhere to instructions even if it compromises their helpfulness. Additionally, they
serve as a cautionary note for those employing language models in educational settings, highlighting
the potential for these models to provide misleading evaluations in tasks involving questions with
incorrect answers.

In conclusion, our research introduces a novel perspective on evaluating critical thinking in LLMs
and establishes a benchmark for assessing this vital skill. It underscores the ongoing necessity for
refining model alignment to ensure that these powerful tools not only follow instructions but also
genuinely comprehend and assist users.

2 Related work

2.1 Language Models and Multiple-Choice Questions

Large language models have demonstrated considerable potential in handling multiple-choice ques-
tions [17, 56, 8], but their performance is not without limitations. Studies have shown that LLMs are
sensitive to the order of answer choices, exhibiting a positional bias that can impact their predictions
[37, 58]. While they excel at answering straightforward questions, LLMs struggle with those requir-
ing deeper reasoning [30], for example about code snippets [41]. Ensuring the safety and robustness
of LLMs in generating and responding to MCQs remains a crucial area of research, with benchmarks
like SafetyBench [55] shedding light on performance gaps that need to be addressed to ensure the
responsible use of LLMs in educational and other critical contexts.

2.2 Critical Thinking Abilities in Large Language Models

Recent research has focused on how well LLMs can think critically, which is crucial for tasks that
require analyzing and evaluating information to reach logical conclusions. Prompt engineering
techniques like the Evoke framework [18] have shown promise in enhancing LLMs’ reasoning skills,
especially in complex tasks like logical fallacy detection. Additionally, the ability of LLMs to self-
improve using unlabeled data and chain-of-thought prompting demonstrates potential for autonomous
learning and development of critical thinking [19]. However, challenges persist, particularly in the
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areas of critique generation and self-critique, as evidenced by the CriticBench benchmark [28]. While
LLMs offer valuable support in educational settings, concerns remain about over-reliance hindering
the development of students’ critical thinking skills, highlighting the need for strategies that promote
balanced and thoughtful integration of these technologies [49].

2.3 Refusal mechanisms in Large Language Models

Refusal mechanisms in LLMs play a crucial role in ensuring their safe and reliable operation. While
safety prompts are commonly employed to prevent harmful or undesirable outputs, recent research
suggests that they might inadvertently increase refusal rates even for harmless queries [57]. Advanced
techniques like Directed Representation Optimization [57] aim to refine the effectiveness of safety
prompts. Furthermore, understanding the underlying mechanisms of refusal, such as the identification
of a one-dimensional subspace governing this behavior, offers the potential for precise control over
refusal capabilities [3]. Beyond safety, the ability of LLMs to abstain from answering questions
beyond their knowledge scope [51, 10] - sometimes referred to as Abstention Ability (AA) - is
vital for improving their overall reliability [48]. Research indicates that strategic prompting and
integration with information retrieval systems can significantly enhance this ability, contributing to
the development of more trustworthy and accurate AI systems [31, 12, 27].

3 Benchmark Design

3.1 Task Formulation

In this study, we aim to assess the ability of language models to recognize and respond appropriately
to multiple-choice questions that lack a correct answer. To achieve this, we employed a specific task
formulation that deliberately excludes the inclusion of typical escape options such as None of the
above or No correct answer within the answer choices. This constraint forces the model to critically
evaluate the provided options and make a judgment regarding their correctness.

We hypothesize that a model capable of robust reasoning should exhibit three potential behaviors in
response to such questions:

1. Explicitly stating that no correct answer exists. This indicates the model’s ability to
identify the lack of a valid solution among the provided choices.

2. Providing the correct answer, even if it is not listed among the choices. This demonstrates
the model’s capacity to generate knowledge beyond the given information and challenge the
constraints of the question itself.

3. Refusing to answer the question due to the absence of a correct option. This signifies
the model’s understanding of its own limitations and its reluctance to provide an inaccurate
or misleading response.

Crucially, we posit that the ideal model’s behavior should not be influenced by prompt engineering
techniques that attempt to coerce a response. Even if explicitly instructed to select one of the provided
options, the model should maintain its ability to critically assess the question and prioritize factual
accuracy over blind obedience to instructions. For instance, if presented with a question like What is
the result of 0 + 0? and given obviously incorrect options (e.g., 5), the model should ideally refuse to
comply with the instruction to choose one of these options.

This task formulation presents a challenging test for language models, requiring not only knowledge
retrieval and pattern recognition but also a degree of logical reasoning and critical thinking. It moves
beyond the conventional multiple-choice question format to probe the model’s ability to navigate
ambiguous situations and prioritize truthful responses.

3.2 Dataset construction

To evaluate the models’ critical thinking abilities, we employed two distinct datasets. The first, the
Basic Addition Dataset (BAD), comprises simple addition problems across three difficulty levels.
These levels correspond to the order of magnitude of the numbers involved, reflecting the increasing
complexity of addition with larger numbers. Level 1 involves single-digit addition, Level 2 involves
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two-digit addition, and Level 3 involves three-digit addition. Level 1 encompasses all 55 unique
addition combinations without repetition. For Levels 2 and 3, 100 examples were randomly sampled
from all possible combinations. Answer choices were randomized but constrained to values near the
correct answer, with no duplicate options. We chose these levels to minimize memorization bias and
to observe if models are more prone to errors with increasing task difficulty.

Category Subcategory Questions

STEM Physics 17
Chemistry 17
Biology 17
Computer Science 17
Mathematics 16
Engineering 16

Humanities History 33
Philosophy 33
Law 34

Social Sciences Politics 20
Culture 20
Economics 20
Geography 20
Psychology 20

Other Other 33
Business 33
Health 34

Table 1: MMLU Subset Question Distribution

The second dataset is a subset of the Mas-
sive Multitask Language Understanding
(MMLU)3 test dataset [17]. It includes
400 questions, with 100 questions each
from STEM, humanities, social sciences,
and other domains (e.g., business, health).
Questions were randomly selected within
each category, ensuring an equal number
of questions per subcategory (with a possi-
ble difference of +1 to reach 100). Details
regarding the specific subsections and ques-
tion counts are presented in Table 1.

We included math questions to assess mod-
els’ ability to reason with universally under-
stood concepts, even though they lack the
dedicated computational capabilities of spe-
cialized tools. Similarly, the general knowl-
edge questions aim to evaluate the mod-
els’ understanding of the world, despite not
having direct access to a vast repository of
information.

4 Experimental Setup

We devised a multi-faceted experimental framework to rigorously assess the models’ capabilities
under diverse conditions. This involved four distinct experimental conditions, each meticulously
designed to probe specific facets of the model’s reasoning and decision-making processes. For all
experiments, we considered questions with only two options.

• Baseline: Serving as our control condition, questions in this setup featured two answer
choices, one of which was correct. No additional prompts or guidance were provided,
enabling us to gauge the model’s baseline accuracy in a standard multiple-choice scenario.

• Easy: In this condition, we explicitly informed the model that all provided options could
be incorrect, presenting two erroneous answer choices alongside the prompt The answer
may not be in the options. This aimed to evaluate the model’s ability to discern and reject
incorrect answers even when explicitly cued to do so.

• Standard: Representing our standard level of difficulty, this condition presented two
incorrect answer choices without any supplementary prompts or instructions. This aimed
to assess the model’s capacity to identify incorrect answers relying solely on its inherent
knowledge and reasoning capabilities.

• Hard: Mirroring the Standard and Easy condition in terms of presenting two incorrect
answer choices, we augmented this setup with the prompt You must choose exactly one
option. This deliberate instruction, designed to increase the task’s complexity, aimed to test
the model’s resilience to potentially misleading directives and its prioritization of factual
accuracy over blind adherence to instructions.

We assess accuracy by evaluating how often the model correctly identifies when there is no correct
answer or provides the correct answer even if it was not listed. To ensure more robust results
and minimize positional bias [37, 58], we calculate the average accuracy for both the original and
shuffled versions of each question. All model evaluations were conducted with temperature set to

3Source: https://huggingface.co/datasets/hails/mmlu_no_train
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zero, response length capped at 128 tokens, and no initial system prompt. For the BAD dataset,
responses were typically simple and patterned, allowing for analysis using regular expressions. Any
non-matching responses were manually checked and corrected. For the MMLU dataset, given the
more complex responses, we used GPT-4-Turbo for categorization into A, B, or C (where C indicates
the model declined to answer). Detailed information on model APIs, inference methods, and prompts
can be found in Appendix A.

5 Human Evaluation

Figure 1: Selected participant re-
sponses demonstrating the range of ap-
proaches to a multiple-choice question
with exclusively incorrect options.

We conducted a study comparing human performance to that
of language models to understand how people approach critical
thinking in multiple-choice scenarios. We were particularly
interested in whether humans show similar biases to LLMs
when faced with multiple-choice questions containing only
incorrect answers.

We recruited 50 participants with diverse educational back-
grounds and demographics through social media. This included
21 women, 28 men, and 1 individual who preferred not to dis-
close their gender. Most participants (23) had undergraduate
degrees, and their ages ranged from 17 to 37 (mean age =
24.42).

Participants completed a 30-question quiz, which included only
one question per category that intentionally lacked a correct an-
swer. This design aimed to assess their ability to recognize and
respond to such trick questions under realistic evaluation con-
ditions. Unlike typical multiple-choice formats, we provided
short answer response fields, allowing participants to express
uncertainty or choose not to answer, thus capturing their critical
thinking process more accurately.

All quiz questions were sampled from the BAD dataset to elim-
inate biases related to general knowledge disparities, ensuring
a level playing field for participants with different educational
backgrounds. Example question and participant answers are presented in Figure 1.

Participants’ responses were analyzed to gauge both overall performance and specific responses to
trick questions. The average score was 26.5 out of 27 (minimum = 24, maximum = 27), indicating
high performance on standard questions. However, responses to trick questions were more varied. On
average, participants correctly identified 2.02 out of 3 trick questions (minimum = 0, maximum = 3).
Notably, 14 participants failed to identify any trick questions. This could suggest potential challenges
in recognizing when no correct answer is present, or it might indicate a reluctance to deviate from the
instructions, which asked them to choose only from the provided options.

While 8 participants achieved perfect scores on both standard and trick questions, 15 participants
missed only one trick question. This further supports the possibility that even high performers may
prioritize adherence to instructions over critical evaluation of the answer choices.

Further analysis of trick question performance by gender showed no significant differences, with both
men and women equally likely to achieve perfect scores or miss all trick questions.

6 Results and Analysis

BAD dataset

Our analysis, visualized in Figure 2, reveals distinct patterns in model performance across varying task
complexities and answer availability. The majority of models cluster in the top-left quadrant, excelling
at tasks with clear correct answers but struggling when critical thinking is required. This aligns
with cognitive load theory [42, 43], suggesting increased cognitive burden hinders performance on
unfamiliar tasks. The absence of models in the bottom-left quadrant, representing poor performance
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Figure 2: The x-axis represents the average accuracy across different types of questions (easy, standard, and
hard) when all incorrect options are provided, compared to the accuracy (y-axis) on the same questions when
one correct option is included. Removing the correct option generally decreases the accuracy of these questions.

across all task types, indicates a baseline capability for following instructions, allowing us to isolate
the specific issue of critical thinking.

Model Baseline Easy Standard Hard

Claude 3 Opus 91.39 21.74 8.65 12.56
GPT4-4o 82.19 0.39 6.71 2.95
Gemini 1.5 Flash 59.68 15.20 0.00 0.00
Gemini 1.5 Pro 100.00 88.06 14.02 12.44
Llama-3.1-405B 79.63 99.02 54.72 88.79
Llama-3.1-70B 81.60 24.83 13.03 10.86
Llama-3.1-8B 56.52 0.00 0.00 0.00

Table 2: Results on the BAD dataset for different prompt
types.

The top-right quadrant highlights models
demonstrating both critical thinking and
correct answer identification. Llama-3.1-
405B particularly excels in this region, fre-
quently identifying the absence of a correct
answer and providing rationale, indicative
of higher-order thinking. As expected, the
bottom-right quadrant, representing mod-
els that hypothetically perform better on
critical thinking tasks than simpler ones, re-
mains unoccupied. It would be unusual for
models to achieve better results on tasks
requiring more critical thinking.

This observations suggests that while models may struggle with critical thinking, they maintain a
fundamental ability to handle simpler tasks when presented with clear, correct answers. Additionally,
Table 2 illustrates that even with explicit information about the potential absence of a correct answer,
models demonstrate limited improvement, further highlighting the complexities of critical thinking in
these models.

MMLU

Our experiments on the MMLU dataset clearly demonstrate that as the complexity of prompts
increases, models struggle to identify questions without correct answers, opting instead to choose
from the provided options, even when provided with hints that no correct answer exists, see Figure
3. This decline in performance is evident across various scientific domains, highlighting a broader
limitation in current models beyond just mathematical or dataset-specific challenges.

Size of the model

Utilizing the BAD dataset, our experiments on the Llama 3.1 series revealed a clear correlation
between model size and performance, in line with the scaling law observed in recent studies [47, 40].
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Figure 3: Performance comparison of models on
MMLU questions, illustrating baseline scores and
the impact of question complexity on model criti-
cal thinking ability.

Figure 4: Performance of LLaMA 3.1 models (8B,
70B, 405B) on the BAD dataset, showing improved
accuracy with increasing model size, particularly
in correctly refusing incorrect options when no
correct answer is presented.

As the number of parameters increased from 8B to 405B, we witnessed a significant improvement
not only in the model’s ability to identify correct answers but also, crucially, in its capacity to refuse
incorrect options. This suggests that the ability to critique and exercise judgment, a key aspect of
critical thinking, scales with model size, offering promising implications for the development of more
discerning and reliable large language models.

Impact of Alignment on a Model’s Critical Thinking

We aimed to examine the impact of alignment techniques, such as reinforcement learning from human
feedback (RLHF) [34] and Direct Preference Optimization (DPO) [39], on a language model’s ability
to make decisions, especially when presented exclusively with incorrect options. We compared two
versions of the model, Qwen-Math-7B [53], and Qwen-Math-7B-Instruct [53], the latter having
undergone DPO alignment and training to follow instructions strictly. Our results demonstrated a
clear difference in performance between the two models. Qwen-Math-7B frequently declined to
choose any provided options when all were incorrect, opting to either provide the correct solution or
abstain from answering. Conversely, Qwen-Math-7B-Instruct consistently followed the instructions,
even when this required selecting an incorrect response. For details see Table 3.

Model Baseline Easy Standard Hard

Without DPO 91.37 97.84 97.63 93.89
With DPO 61.76 15.42 4.64 4.25

Table 3: Impact of model alignment on results across various
prompt types in the BAD dataset.

Previous work has shown that alignment
can negatively impact reasoning perfor-
mance on benchmarks like MMLU [7], and
smaller models can struggle under align-
ment [6]. This underscores the trade-offs
inherent in different training approaches.

The disparity in performance between
aligned and unaligned models suggests that
while alignment is crucial for ensuring
models are useful and safe, it might also compromise their flexibility. It’s possible that models
overly focused on following instructions might not consider the possibility of all options being
incorrect. This strict adherence might also limit the model’s ability to handle ambiguous or incorrect
instructions, as it prioritizes aligning with human preferences, potentially at the expense of critical
thinking.

Interestingly, Llama-3.1-405B seems to potentially handle these issues better. Its alignment approach
[14], which allows annotators to revise answers, might contribute to this. Including these edited
responses in alignment could give the model a deeper understanding of complex situations, such as
refusing when there is no correct answer in a multiple-choice question, leading to a more thoughtful
and precise approach to evaluating and choosing responses.
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7 Limitations and future work

While the datasets used in this study offer valuable insights into critical thinking in LLMs, they have
limitations. The BAD dataset, despite being designed to minimize memorization, may not fully
capture the nuances of numerical reasoning. The MMLU subset, though diverse, might not represent
the full spectrum of questions LLMs encounter. Furthermore, inherent biases in the original MMLU
dataset could propagate to our subset.

Future work could involve developing more comprehensive and nuanced datasets to further explore
critical thinking in LLMs, incorporating a wider range of tasks and domains to evaluate LLMs across
various aspects of reasoning. Additionally, exploring the incorporation of chain-of-thought prompting
to provide LLMs with a mechanism to explain their reasoning process, potentially enhancing their
ability to think critically.

8 Conclusions

The research presented in this paper explores the critical thinking capabilities of LLMs, particularly
when faced with multiple-choice questions that lack a correct answer. The findings indicate that
LLMs often prioritize adherence to instructions, even when it leads to selecting incorrect options.
This highlights a potential gap in their ability to exercise critical judgment and deviate from prescribed
rules when necessary. The implications of this limitation are particularly relevant in educational
settings, where the blind adherence to instructions could lead to inaccurate evaluations and hinder the
learning process.

While the Llama-3.1-405B model demonstrated a degree of critical thinking, especially in the
context of simple arithmetic problems, the overall performance across different models and datasets
underscores the need for further advancements in this area. The human study conducted in parallel
with the LLM evaluations further emphasizes the complexities of critical thinking, revealing that even
humans can exhibit a similar bias towards rule-following, even when it contradicts logical reasoning.
This parallel suggests that the challenges observed in LLMs might reflect broader cognitive patterns
and underscores the importance of developing educational strategies that foster critical thinking skills.

The observation that larger models tend to perform better in critical assessment tasks further suggests
that critical thinking may be an emergent property that scales with model size. The contrast in
performance between aligned and unaligned models adds another layer to the discussion, suggesting a
potential trade-off between alignment and critical thinking capabilities. These findings raise important
questions about the methods used to align models and their impact on the preservation or enhancement
of critical reasoning skills. In the context of education, this trade-off highlights the need to carefully
balance the benefits of alignment, such as safety and helpfulness, with the potential impact on the
development of critical thinking abilities in students interacting with these models.

In conclusion, this research contributes to the ongoing exploration of critical thinking in LLMs,
highlighting both the challenges and opportunities in this domain. The findings emphasize the
importance of developing alignment techniques that not only promote helpfulness and safety but also
foster or maintain the capacity for critical evaluation and independent judgment. The path forward
involves a deeper understanding of the mechanisms underlying critical thinking in LLMs and the
development of strategies to scale and optimize these mechanisms without compromising the benefits
of alignment. The ultimate goal is to create LLMs that can not only follow instructions but also reason
logically, and make informed decisions, even in the face of ambiguity or incomplete information.
Achieving this goal will have far-reaching implications, not only for the advancement of AI but also
for its effective and responsible integration into educational settings, empowering both students and
educators to harness the full potential of these powerful tools.
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Thacker, Çağlar Ünlü, Zhishuai Zhang, Mohammad Saleh, James Svensson, Max Bileschi,
Piyush Patil, Ankesh Anand, Roman Ring, Katerina Tsihlas, Arpi Vezer, Marco Selvi, Toby
Shevlane, Mikel Rodriguez, Tom Kwiatkowski, Samira Daruki, Keran Rong, Allan Dafoe,
Nicholas FitzGerald, Keren Gu-Lemberg, Mina Khan, Lisa Anne Hendricks, Marie Pellat,
Vladimir Feinberg, James Cobon-Kerr, Tara Sainath, Maribeth Rauh, Sayed Hadi Hashemi,
Richard Ives, Yana Hasson, Eric Noland, Yuan Cao, Nathan Byrd, Le Hou, Qingze Wang,
Thibault Sottiaux, Michela Paganini, Jean-Baptiste Lespiau, Alexandre Moufarek, Samer
Hassan, Kaushik Shivakumar, Joost van Amersfoort, Amol Mandhane, Pratik Joshi, Anirudh
Goyal, Matthew Tung, Andrew Brock, Hannah Sheahan, Vedant Misra, Cheng Li, Nemanja
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A Evaluation Protocol

A.1 Models

Model API and Link
GPT-4 OpenAI: https://platform.openai.com
Claude 3 Anthropic: https://www.anthropic.com/api
Gemini 1.5 Pro Google: https://ai.google.dev
LLaMA 3.1-8B, 70B DeepInfra: https://deepinfra.com/
LLaMA 3.1-405B Replicate: https://replicate.com/
Qwen2-Math-7B Hugging Face: https://huggingface.co/Qwen/Qwen2-Math-7B
Qwen2-Math-7B-Instruct Hugging Face: https://huggingface.co/Qwen/Qwen2-Math-7B-Instruct

Table 4: Evaluated models with corresponding APIs and links.

For all models, we set the parameters as follows:

• temperature = 0
• max_tokens = 128
• No system prompt was provided

Note: All models were evaluated in August 2024.

A.2 Prompts

Prompt Type Instruction
easy The answer may not be in the options.
standard (no additional instructions)
baseline (no additional instructions)
hard You must choose exactly one option.

Table 5: Prompts used for each dataset level in BAD and MMLU.

Note: The difference between baseline and standard prompts is that in baseline, we always
include one correct answer, whereas in other types, this is not guaranteed.
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A.3 Mapping

We used a two-step approach for mapping:

• For straightforward responses from BAD dataset we used regex-based mapping expressions:

"""
FUNCTION map_answers(answer: str, prompt: str) -> Union[int, str]:

# Extract answer options from prompt using regex
answer_ = re.findall(r"([AB])\.\s*(\d+)", prompt)

# Split answer into parts
answer_list = answer.split(" ")

# If answer has two parts and the second is numeric, return it
IF len(answer_list) == 2 AND answer_list[1].isnumeric():

RETURN int(answer_list[1])

# Iterate over answer options
FOR pair in answer_:

# If answer matches option letter or number, return option number
IF pair[0] == answer.strip(’.1234567890 .\n’) OR pair[1] == answer.strip(" "):

RETURN int(pair[1])

# If no match found, return "Unknown"
RETURN "Unknown"

"""

• For more difficult cases, we used GPT-4-Turbo for mapping with the following prompt:

"""
Use the following rules to map the model’s answer to the letters
’A’, ’B’, or ’C’:

1. Return ’A’ or ’B’ if the model gives one of the options.
2. If the model gives a letter ’A’ or ’B’ but then proposes a

different answer, return the letter ’C’.
3. If the model says that there is no correct answer, return the

letter ’C’.

Respond with the letter ’A’, ’B’, or ’C’:

Options: {input_string}
Model’s Answer: {model_answer}
"""

Explanation:

• Options: {input_string}: Represents the options provided in the original question.
• Model’s Answer: {model_answer}: Represents the answer generated by the model.
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B Dataset

What is {a + b}? Respond solely with A or B.
Options:
A. Option 1
B. Option 2

Figure 5: Prompt template for the BAD dataset.

Level Details and Example

Math-Easy

a and b are natural numbers between 0 and 9.

Example:
What is 3 + 4? Respond solely with A or B.
Options:
A. 7
B. 14

Math-Medium

a and b are natural numbers between 10 and 99.

Example:
What is 59 + 63? Respond solely with A or B.
Options:
A. 117
B. 122

Math-Hard

a and b are natural numbers between 100 and 999.

Example:
What is 341 + 410? Respond solely with A or B.
Options:
A. 658
B. 751

Table 6: Details and examples for each level in the BAD dataset.

Note: For the MMLU dataset, we add Respond solely with A or B for the baseline. For each level,
the appropriate prompts are applied as described in Table 5.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claims presented in the introduction and abstract accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the Limitations and future work section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: There are no theoretical results in our work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All details regarding evaluation are presented in the main text or in the
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We have shared the link to the public repository with code and data used.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All details regarding hyperparameters, prompts, model’s accessed are available
either in the main text or in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: This will be changed in the future.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All details regarding API and computational resources used are presented in
the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We respect the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both positive and negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any model. The only data we have used was the subset of
already published MMLU dataset and dataset of addition on simple numbers which does
not pose any danger.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have only used MMLU dataset which os on the open license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

25

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The BAD dataset we have created is described in detail in the paper and
available in our repository.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We have described full annotation process. There was no compensation for
answering 30 question regarding number addition, all participants were volunteers.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [No]

Justification: Our study only involved asking 30 questions about number addition on the
primary school level difficulty. All participants were volunteers.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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