
Proceedings of Machine Learning Research 1:1–15, 2024 FM-EduAssess at NeurIPS 2024 Workshop

BanditCAT and AutoIRT: Machine Learning Approaches to
Computerized Adaptive Testing and Item Calibration

James Sharpnack james.sharpnack@duolingo.com
Kevin Hao kevin.hao@duolingo.com
Phoebe Mulcaire phoebe.mulcaire@duolingo.com
Klinton Bicknell klinton.bicknell@duolingo.com
Geoff LaFlair geoff.laflair@duolingo.com
Kevin Yancey kevin.yancey@duolingo.com
Alina A. von Davier alina.vondavier@duolingo.com
Duolingo, 5900 Penn Ave., Pittsburgh PA 15206

Abstract
In this paper, we present a complete framework for quickly calibrating and administering
a robust large-scale computerized adaptive test (CAT) with a small number of responses.
Calibration — learning item parameters in a test — is done using AutoIRT, a new method
that uses automated machine learning (AutoML) in combination with item response theory
(IRT), originally proposed in Sharpnack et al. (2024). AutoIRT trains a non-parametric
AutoML grading model using item features, followed by an item-specific parametric model,
which results in an explanatory IRT model. In our work, we use tabular AutoML tools
(AutoGluon.tabular, Erickson et al. (2020)) along with BERT embeddings and linguistically
motivated NLP features. In this framework, we use Bayesian updating to obtain test taker
ability posterior distributions for administration and scoring.

For administration of our adaptive test, we propose the BanditCAT framework, a
methodology motivated by casting the problem in the contextual bandit framework and
utilizing item response theory (IRT). The key insight lies in defining the bandit reward as
the Fisher information for the selected item, given the latent test taker ability (θ) from
IRT assumptions. We use Thompson sampling to balance between exploring items with
different psychometric characteristics and selecting highly discriminative items that give
more precise information about θ. To control item exposure, we inject noise through an
additional randomization step before computing the Fisher information. This framework
was used to initially launch two new item types on the DET practice test using limited
training data. We outline some reliability and exposure metrics for the 5 practice test
experiments that utilized this framework.

1. Introduction

The goal of test assessment is to measure an abstract characteristic, like listening com-
prehension or speech production, and summarize the test taker’s proficiency with a score.
Computerized adaptive tests sequentially administer items (i.e., questions) according to an
administration policy. Ideally, this policy maximizes the information gathered about the test
taker’s ability, e.g., by adjusting the difficulty of administered items based on previous test
taker responses. Reported scores are designed to reflect the test taker’s proficiency, which
is achieved through proper calibration of the test items. In this paper, we introduce two
methods for calibrating and deploying adaptive tests.
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Calibration. Item response theory (IRT) models an item’s psychometric characteristics,
also known as item parameters, such as difficulty and discrimination, which are essential
for adaptive testing and scoring. Item Response Theory (IRT) focuses on the measurement
and evaluation of educational or psychological latent traits, that is, unobservable variables,
such as ability, skill, or competence levels (Lord and Novick, 1950). However, traditional
IRT calibration requires extensive data collection, typically gathered during an item piloting
phase. There are three primary situations in which we might calibrate a proportion of an
item bank, cold-start and jump-start piloting of new items, and warm-start recalibration of
the entire item bank.

1. Cold-start: New pilot items are added without response data, and only item features
are used to calibrate them, while re-calibrating the existing operational item bank.

2. Jump-start: A limited number of responses are collected for new pilot items in a
piloting phase, while both pilot and operational items are calibrated.

3. Warm-start: The operational item bank is re-calibrated to reflect recent response
data, often due to changes in the user interface, test taker population, or preparation
materials.

When an entirely new item bank is to be launched, there is no existing data with which to
calibrate the items, and typically we have a pre-launch phase where we gather responses
with which to calibrate items. Explanatory IRT models refer to item response theory (IRT)
models that use item features to predict item parameters, such as difficulty or discrimination,
rather than treating each item independently. This enables calibrating tests in the cold and
jump-start settings, by using item level features (such as NLP features) to predict the item
parameters.

In this work, we outline AutoIRT, a new approach to calibrating item parameters
using automated machine learning (AutoML). AutoML tools train machine learning models
with automated tuning parameter selection, feature engineering, data processing, and task
selection. AutoIRT leverages AutoML to train IRT models from test responses and item
content, overcoming the need for manual tuning and supporting multi-modal input. While
traditional AutoML models are not inherently interpretable, AutoIRT maintains compatibility
with IRT models, the standard in psychometrics. AutoIRT was introduced in Sharpnack
et al. (2024) and is the first use of AutoML to fit IRT models.

Adaptive Testing. A computerized adaptive test (CAT) is a psychological or educational
test that is usually administered in a digital environment and it uses an iterative, algorithm-
based approach to select and administer test items. In IRT-based CATs, items are chosen
based on the TT’s estimated ability level throughout the testing process, and the estimated
ability is continuously updated after each item is responded to. Test developers aim to
devise optimal sequences of items for each TT, so that the accuracy of the test is maximized,
while keeping the test relatively short, the item exposure low, and the cheating rates by
copying from other TT low. Hence, a CAT is a much more efficient test, being shorter while
maintaining the accuracy of linear tests (Lord, 1980; Wainer, 2000). Although a CAT can be
administered outside of an IRT framework, it is customary in psychometrics to use IRT for
every part of the testing process: item bank calibration, item routing, and ability estimation.
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In this work, we introduce a new approach to item selection in a CAT, called BanditCAT.
This framework casts CAT in the contextual bandit framework where the rewards are the
Fisher information of that item for the test taker’s ability. The Fisher information is derived
from the IRT item parameters that were estimated using AutoIRT. We use Thompson
sampling along with an additional randomization step to control for exposure while still
selecting informative items. We show the effectiveness of this system by outlining its use on
the practice Duolingo English Test during the launch of two new item types, Y/N Vocabulary
and Vocabulary-in-context. This preliminary report introduces the first method in the
BanditCAT framework, but it does not exploit the full capability of this approach. A more
complete follow-up work based on this framework is forthcoming.

1.1. Background on Computerized Adaptive Testing

Item Response Theory. IRT corresponds to a class of interpretable statistical models
that is commonly used for the scoring and administration of psychological and educational
assessments, including computerized adaptive tests (CATs) (Baker and Kim, 2004; Lord, 1980;
Wainer, 2000). While there are multidimensional IRT models, in most operational applications
the unidimensional IRT models are typically used. The unidimensional IRT framework makes
the following assumptions: the test taker (TT) grade distribution depends on a single
parameter θ (unidimensionality), the expected grade is increasing in ability (monotonicity),
and grade measurements are independent given that the TT was administered the items
(local independence) (Bock and Aitkin, 1981). IRT models the grades and ability θ for a
given TT. Define Gi as the random grade if they were administered item i, then the item
response function is the expectation pi(θ) = E[Gi|θ] (by unidimensionality). A test session
consists of a sequence of T administered items IT = (I1, I2, . . . , IT ) and observed grades
GT = (G1, . . . , GT ). The local independence assumption implies that these are both random
with the following Markov structure: Gt is independent of Gt−1 given It for t = 1, . . . , T
(Baker and Kim, 2004).

One important aspect of IRT models is that they are interpretable, which is achieved
by specifying a model. The most commonly used IRT models are the parametric logistic
models for binary grades (right or wrong response). In these models the grade probability,
also known as the item response function (IRF), takes the form,

p(θ;ϕi) = P{Gt = 1|θ, It = i} = ci + (1− ci) · σ(ai(θ − di)), (1)

where ϕi = (ai, ci, di) are the item parameters: slope, or discrimination, ai, chance parameter,
ci, and difficulty, di (Lord, 1980; Fischer, 1973). The slope parameter is related to the
efficiency of an item in terms of the information provided to distinguish among test takers.
The chance parameter is part of the 3-parameter logistic IRT model, reflecting the probability
of a correct response due to chance, and the difficulty parameter reflects the difficulty of
the item for a particular TT population. There is a clear connection between the IRF and
the item parameters. For example, at larger discrimination levels, the IRF is steeper, and a
small increase in ability around that item’s difficulty level will lead to a significant increase
in the probability of a correct response (Baker and Kim, 2004; Fox, 2010).

Calibration with explanatory IRT Models. Without additional information about
items, calibrating IRT models such as (1) requires hundreds of responses. In order to calibrate
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in the cold-start and jump-start settings, we need to use contextual information about the
items, typically derived from the content of the item itself (e.g., lexical and semantic content).
We assume throughout that each item has associated explanatory features, denoted as
xi ∈ Rd. These features may be derived from neural network embeddings such as BERT
(Devlin et al., 2019) or CLIP (Radford et al., 2021), hand-crafted linguistic features, or other
key characteristics of the item. The use of item features in explanatory IRT models has
a long history. A prominent example is the Log-Linear Trait Model (LLTM) by Fischer
(1973), which extends the Rasch model by using item features to predict item difficulty
through a linear model (see also De Boeck and Wilson (2004)). More recent extensions
leverage pretrained language models like BERT (Devlin et al., 2019) to calibrate items from
limited response data. For instance, Benedetto et al. (2021) predicted item difficulty using
a fine-tuned BERT model based on student responses to multiple-choice questions, while
Byrd and Srivastava (2022) employed a similar approach to estimate both difficulty and
discrimination parameters for 2PL IRT models from natural language questions. Their
work incorporated linguistically motivated features such as semantic ambiguity, alongside
contextual embeddings generated by BERT. Additionally, Reyes et al. (2023) used RNNs
to predict item difficulty, which had been pre-fitted using the Rasch model. Most of these
approaches focus on predicting item parameters that have been pre-estimated using a large
item bank with substantial response data. Training such models requires an extensive item
bank, with hundreds of responses per item to generate the necessary training data.

An alternative method is to train an explanatory IRT model by fitting the item parameters
through a neural network (NNet), where the final layer represents the IRT model (1). This
approach trains a NNet to predict scores from features and ability θ, while constraining
the model to follow the IRT structure. BERT-LLTM was introduced in McCarthy et al.
(2021) to train LLTM models using BERT embeddings alongside hand-crafted linguistic
features. More recently, Yancey et al. (2024) proposed BERT-IRT, which fits a 2PL model
by constraining the NNet to follow the form of (1) with ci = 0 for all items i. In that work,
they demonstrate that BERT-IRT can accurately train explanatory IRT models with only a
few responses per item and apply it to English language proficiency assessments. They use a
linear form for log(ai) and di, which Sharpnack et al. (2024) enhanced by employing a fully
non-parametric AutoML model. The model is trained using xi and θ̃s as inputs, with the
predicted binary score as the output. In our experiments we used a use a proxy estimate
for test taker ability, θ̃s, which is derived from scores on other item types (similar to the
approach in Yancey et al. (2024)).

Computerized Adaptive Testing. There are several broad categories of CAT al-
gorithms, such as maximum information selection (Birnbaum, 1968), maximum global
information selection (Chang and Ying, 1996), fully Bayesian selection (van der Linden,
1998), and shadow testing (van der Linden, 2005). Most of these methods base their selection
on the Fisher information of each item given our current estimate of θ for the model (1). For
the 3PL model this is,

Fi(θ) =
(ai · (1− ci) · p2(θ; ai, di) · (1− p2(θ; ai, di)))

2

(ci + (1− ci) · p2(θ; ai, di)) · (1− (ci + (1− ci) · p2(θ; ai, di)))
(2)
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where
p2(θ; ai, di) =

1

1 + exp(−ai(θ − di))
, (3)

is the 2PL IRF. The main exception to this are those that select based on the KL divergence
(Chang and Ying, 1996). All of these methods require provisional estimates of θ, furthermore
several require estimating the posterior distribution of θ given the responses observed thus far
for the given test session. Luckily, because the IRT models are univariate, the posterior can be
estimated without trouble by approximating distributions as point masses on a discrete grid
of θ values. In multi-dimensional models, this approach breaks down and more sophisticated
Bayesian updating methods are needed (Mulder and van der Linden, 2010).

Directly selecting items that maximize this information measure can result in poor
exposure rates, namely, a handful of items can be selected far too frequently. Several
methods have been proposed for exposure control including item cloning (van der Linden
and Veldkamp, 2000) and the Sympson-Hetter method (Sympson and Hetter, 1985). While
the latter tracks the current exposure rates and guides them toward a target, the former
uses randomization to balance exposure by randomly selecting items from the top k most
informative. The randomization approach has a practical advantage in production systems
because they are not dependent on any global statistics that need to be updated, and so can
be deployed to servers independently who do not need a common cache.

Thompson Sampling and Contextual Bandits. A stochastic contextual bandit
problem models a repeated interaction between a player and an environment. In each round,
the player is presented with information about K actions (called arms), typically represented
by d-dimensional feature vectors. The player must select an arm based on past observations.
Only the reward from the selected arm is revealed, and the relationship between the rewards
and features is governed by a linear model. The objective of the player is to maximize
cumulative reward over T rounds. Over the past few decades, bandit algorithms have gained
widespread use in various real-world applications, such as recommender systems (Li et al.,
2010), online advertising (Schwartz et al., 2017), and clinical trials (Woodroofe, 1979).

Classic stochastic linear contextual bandit algorithms, such as Linear Upper Confidence
Bound (LinUCB) (Li et al., 2010) and Linear Thompson Sampling (LinTS) (Agrawal and
Goyal, 2013), have been shown to achieve nearly optimal total reward, given some modeling
assumptions. Like most bandit algorithms, the objective is to begin by exploring the space of
actions to get a sense of which are profitable, and then exploiting the actions that will give
the highest reward. Thompson sampling accomplishes this by modeling reward as a function
of the context vectors and latent parameters. By tracking the posterior distribution of the
latent parameters, it draws realizations of these from the posterior and then selecting actions
that maximize expected reward evaluated at that draw. Translating this to the CAT setting,
the ‘player’ is the CAT, ‘environment’ is the test taker, ‘actions’ are the items administered,
‘context’ is based on the previous responses of the test taker and information about the items
themselves, ‘reward’ is the information gained about test taker ability.

2. Item Calibration with AutoIRT

To harness the flexibility and performance of AutoML, we begin by fitting a grade classifier
using the ability parameter θ and d-dimensional item features xi ∈ Rd as inputs. In our
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experiments, we employ a stacked ensemble of models—random forests, LightGBM, XGBoost,
and CATBoost—implemented through the AutoGluon-tabular Python package Erickson
et al. (2020). This package was chosen for its strong performance in tabular data benchmarks
Gijsbers et al. (2024). Although we focus on tabular models since we have already engineered
features like BERT embeddings, AutoML supports multimodal input. We hope to eventually
apply AutoIRT directly to raw item content. The item ID is passed to the AutoML predictor
as a feature, similar to the use of random effects in traditional models.

Let p̂(θ;xi) represent the AutoML-predicted probability of a correct response for a test
taker with ability parameter θ and an item with features xi. Next, we extract a more
interpretable IRT model by projecting the AutoML model onto the closest IRT model using
a least squares approach. Specifically, we minimize the following loss function to estimate
item parameters:

L(ϕ) =
∑
i∈R

∑
θ∈Θ

(p(θ;ϕi)− p̂(θ;xi))
2,

where Θ is a regular grid of θ values. This ensures that Θ covers most of the probability
mass of the distribution of θs. In the case of the 3PL model (1), we either will allow the
chance parameter ci to vary, or be fixed (typically at ci = 0, the 2PL model). In Sharpnack
et al. (2024), an extension of this model was proposed which uses the above method as the
M-step in a Monte Carlo EM algorithm. This allowed them to jointly learn θ and the item
parameters ϕi. One restriction is that the chance parameters and θ cannot be jointly learned
due to a lack of identifiability (Baker and Kim, 2004), so that approach required fixing chance
ci. In our setting, we initialize θ to be a weighted combination of other item type scores,
resulting in a proxy ability. This approach is similar to what was taken in Yancey et al.
(2024).

3. BanditCAT Framework

3.1. Contextual Bandit Interpretation of CATs

In this section, we will cast CAT administration as a contextual bandit problem. Each arm
in the bandit setting corresponds to an item It and the action is the administration of the
item at round t of T rounds. Each item has context, which are the item features, xi ∈ Rd.
The reward is the Fisher information for that item FIt(θ) for that test taker’s true θ. This
reward is unobserved because we do not have access to the true θ, but we are able to model
the reward via our provisional estimate of θ (or the current posterior) and our calibrated
item parameters. The grades enter into the picture via our provisional estimate of θ, and our
understanding of how informative an item is for a test taker’s ability is a direct product of
the observed grades, GIt .

One of the advantages of using the Fisher information is that it directly measures the
information content of a response to that item. At the end of a test session we can evaluate
how effective our item selections were by measuring the information content of the data that
we gathered about the test taker. Specifically, the total reward for that session is the Fisher
information of all data gathered thus far,

F̄T (θ) := E

( T∑
t=1

∂

∂θ
log f(GIt |θ)

)2
 =

T∑
t=1

FIt(θ). (4)
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The above follows from the fact that the score (gradient of log likelihood) at the true θ has
mean 0 and the local independence assumption. It should be noted that we are conditioning
on the items that were administered, In, in that session. We know by the Cramer-Rao lower
bound that the variance of any unbiased estimator for θ is at least 1/FT (θ), under regularity
conditions, that are satisfied in this case.

For the 2PL model, there is a clear relationship between the item parameters and the
Fisher information, namely the height is a2i /4, regardless of di. This is not true of the 3PL
model, since the chance parameter makes the maximum information point deviate from di.
The height is then a complex function of the item parameters, which will not be amenable to
our exposure control randomization method. To this end, we approximate the 3PL Fisher
information with a Gaussian kernel,

Fi(θ;µi, νi, hi) = hi · exp
(
−(θ − µi)

2

2ν2i

)
, (5)

where µi is the center parameter, hi is the height, and νi is the bandwidth parameter. For a
given set of item parameters ai, ci, di we obtain µi, hi, νi by moment matching. For the 2PL
model, we use (2) directly, which simplifies greatly.

3.2. Thompson Sampling with Exposure Control

In this section, we introduce an initial algorithm for item selection under the BanditCAT
framework, which we call BanditCAT V1 to indicate that it is the first incarnation of this
approach. In our setting the reward FIt(θ) is unobserved, however we can build a model for
it via the posterior π(θ|GIt). To utilize the bandit framework, we let the reward model be
the following,

r̂i(θ) = Fi(θ; ϕ̂i), (6)
where ϕ̂i is the predicted item parameters (âi, ĉi, d̂i) from AutoIRT. In the case of the
Gaussian kernel Fisher information (5) we first convert the item parameters ϕ̂i into kernel
parameters (ĥi, µ̂i, ν̂i). In order to utilize the full contextual bandit framework, the item
parameters ϕ̂i should be drawn from a distribution, which we reserve for a future work.

We want to control the frequency of arm selection (i.e., exposure) for Thompson sampling
in bandits, and we accomplish this using randomization in the item parameters when
calculating r̂i(θ). Specifically, for the 2PL model, we sample the discrimination parameter,

ãi ∼ Gamma(âi/γ, γ), (7)

where γ > 0 is a global scale parameter (the mean for the Gamma is âi). For the 3PL model
we use the Fisher information approximation, (5), and instead add randomness to the height
parameter,

h̃i ∼ Gamma(ĥi/γ, γ). (8)
These randomization approaches were developed through additional experimentation and
simulation. In our method, we draw θ from the posterior distribution given the observed
grades. However, we additionally allow for multiple θk’s to be drawn and then we average the
estimated rewards for each of these. The purpose of this is to interpolate between traditional
Thompson sampling and fully Bayesian item selection (van der Linden, 1998). Specifically,
the expectation of Fi(θ) over the posterior is the Bayesian information criteria, so this is
approximated by the average with enough Monte Carlo samples of θ.
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3.3. BanditCAT V1

Input: eligible item bank I, fitted item parameters ϕ̂i (from AutoIRT), prior distribution
over θ, π1, and exposure control parameter γ > 0.

At each round, t = 1, . . . , T ,

1. For k = 1, . . . ,K, independently draw θk ∈ Θ from πt(.).

2. For each test item, i ∈ I, draw information parameters,

(a) For the 3PL model, draw (h̃i, µ̂i, ν̂i) from (8) to obtain r̃i(θk), k = 1, . . . ,K,
according to (5).

(b) For the 2PL model, draw (ãi, d̂i) from (7) to obtain r̃i(θk), k = 1, . . . ,K, according
to (2).

3. Select item It ∈ I that maximizes 1
K

∑K
k=1 r̃i(θk).

4. Observe the grade GIt for that test and update posterior πt(.) = π(.|GI1 , . . . , GIt).

Finally, we return the posterior mean EπT [θ] as the score for that item type.
Aside from its statistical soundness there are some advantages to this method. Particularly,

it can be deployed independently to any server without any shared cache or memory, making
server autoscaling quite simple. Computationally the method is quite simple, with the most
expensive operation being the very fast posterior calculation. In the instance that there are
additional eligibility criteria, then BanditCAT V1 will reduce the eligible item bank prior
to step (2). For multiple item types, this method is applied in sequence for each item type.
Multidimensional variants of BanditCAT are in development as well as a complete Thompson
sampling approach that samples the item parameters as well.

3.4. CAT Simulation

For model selection and tuning config parameters (most notably the exposure control param-
eter γ), we need to be able to simulate what will happen when we apply our administration
algorithm to new test takers. We use the following nearest neighbor matching algorithm
to simulate a new session for single text vocab.

Input: Test sessions with proxy θ’s derived as a weighted average of scores from item
types other than those being modified and responses for the item types in question.

For a sample of real tests, calculate their proxy θs (call this S0) and for each test do the
following:

1. Administer the first item, I1, for a session.

2. For each round t = 1, . . . , T ,

(a) Find the historical session that was administered item It that has the closest
proxy θ to the target S0 (nearest neighbor matching).

(b) Let the grade Gt for the simulated session be the grade for the matched historical
session on item It.

(c) Update posterior and select next item It+1.
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3. Score this simulated session as if it were real

We can use these simulated sessions to evaluate our desired metrics, which is typically the
exposure rates so that we can hit our target.

3.5. Assessing Vocabulary in the Duolingo English Test

In this work, we study the calibration and administration of vocabulary item types in the
Duolingo English Test (DET). We focus on two item types that are at the start of the DET
which assess vocabulary knowledge. These items in combination assess the form, meaning,
and use of English words.

Y/N Vocabulary and Vocab-in-Context item types. We focus on the first two item
types in the DET (V8): yes/no vocabulary (Y/N Vocab) and vocabulary in context (ViC).
The practice test includes 3290 Y/N Vocab items and 585 ViC items, with 18 Y/N Vocab
and 9 ViC items administered per test session in succession. Test takers have 5 seconds to
respond to Y/N Vocab items and 20 seconds for ViC items. Y/N Vocab requires the test
taker to identify whether a word is real or fake (with fake words generated by an RNN).
ViC is a fill-in-the-blank task where the test taker completes a word within a sentence. For
example, a Y/N Vocab item might ask if “newbacal” is a real word, while a ViC item might
ask for the missing word in “I’m sorry for the inter_______, but could you explain that
last part again?” Additional details are provided in Sharpnack et al. (2024), and practice
tests can be taken for free at http://englishtest.duolingo.com.

Item Features. Throughout we use a combination of linguistic and features from a
foundation model (RoBERTa). For each item, we calculate a set of features based on its
content, using the Corpus of Contemporary American English (COCA), Davies (2008), for
corpus-based features. In Y/N Vocab items, which consist of a single word, features include a
binary indicator for whether the word is real, its length, and binary indicators for its presence
in CEFR-specific wordlists. We also consider log frequency, log frequency-rank, capitalization
frequency, and n-gram features from COCA. For ViC items, we use surface features such
as the number of missing characters and vowel proportion in the missing part, along with
log frequencies from COCA and its sub-corpora. We include RoBERTa embeddings of the
masked passage (reduced to 10 dimensions using PCA), sentence-level log frequencies, the
normalized position of the damaged word, and the conditional probability of the correct
word based on visible letters and word length. The use of foundation model features is
indispensable to our calibration performance.

Administration of Vocabulary Items. The control condition in our experiments is
the previous version of the DET practice test, which includes Y/N Vocab items but no ViC
items. The control Y/N vocab items are arranged in a card format consisting of 18 words
per card (roughly half real and half fake). The test taker is instructed to identify the real
words within the card, and thoughout the test there are 4 such cards, for a total of 72 Y/N
Vocab items. The card format has the disadvantage that it doesn’t enable strong adaptivity,
since the words displayed on the card are predetermined.

The administration algorithm for treatment conditions is the following. 18 Y/N Vocab
items and 9 ViC items are administered in sequence at the beginning of DET test sessions.
For each Y/N Vocab administration event, we draw a Bernoulli(1/2) to determine if the word
displayed is real or fake. Then the real or fake item is selected using BanditCAT V1 from
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among the eligible items. Only items that have not yet been administered are eligible. The
session continues with 9 ViC items with 20 second time limits after an instructional screen.

4. Experimental Results

4.1. DET Experiments

Table 1 summarizes a series of experiments conducted for the DET practice tests conducted
between 2023-01-23 and 2023-02-19. The primary purpose of these experiments are to
converge on a final candidate for DET V8. While these experiments were important steps
along the way to obtaining this launch candidate, none of the treatment conditions listed
here are operational on the DET. None of these experiments or their metrics are reflective of
the certified DET. All treatment conditions listed here use AutoIRT + BanditCAT V1 as
explained above. The experiments are grouped by experimental blocks (E1 to E5) and contain
control and treatment conditions (e.g., T1, T2, T3, etc.). The control conditions (labeled
as "C") across different experimental blocks use 4x Y/N (yes/no) vocab items, while the
treatment conditions only vary in how they administer other aspects of the test such as other
item types Some experiments, such as those marked with "*", denote adjusted calibrations
of the AutoIRT method, with changes to the model or the downstream administration from
a prior condition. Experiment E5 includes ViC items in addition to the Y/N Vocab items
because this is the first experiment that used AutoIRT + BanditCAT V1 for ViC items. In
these treatment conditions, the ViC administration was not dependent on the responses to
the Y/N Vocab items. Each condition has a different number of participants (N) ranging
from roughly 4,000 to over 14,000, indicating robust data collection efforts across different
time spans in early 2023. In all of these cases, the items were calibrated in the jump-start
setting, with a limited amount of response data for both of these item types. This preliminary
response data was gathered from practice test sessions that were administered a treatment
condition in a prior experiments (that we will not be discussing here). In all experiments, we
set the exposure control parameter using the aforementioned nearest neighbor matching to
hit a reasonable target.

4.2. Evaluation Metrics

Retest reliability (RR) is a common performance measure, defined as the Pearson correlation
between scores when the same user takes the test twice. In classical test theory, the observed
score is seen as the true score plus noise. The standard error of measurement (SEM), which
estimates how much a score deviates from the true score, is related to RR by the formula:

SE = SX

√
1−RR,

where SX is the population score standard deviation, and SE is the error standard deviation.
For example, increasing RR from 0.5 to 0.6 reduces SEM by 11.8%. In practice tests, the
reliability is typically smaller than in certified tests where the test taker’s motivation is
higher. Another common metric for a item type score (such as the Y/N Vocab score) is
the correlation between that item types score and the overall score for the test. The DET
consists of 14 task types ranging from interactive listening and reading to dictation (Cardwell
et al., 2022). We also consider the maximum exposure rates, that is over all of the test
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Exper. Cond. Min
Date

Max
Date

N Description

E1 C 01-23 01-26 6304 Control, 4x Y/N Vocab Items
E1 T1 01-23 01-26 6535 Y/N Vocab uses AutoIRT and BanditCAT

V1
E1 T2 01-23 01-26 6050 Y/N Vocab uses AutoIRT and BanditCAT

V1, different downstream admin. from T1
E2 C 01-26 01-31 10560 Control, 4x Y/N Vocab Items, no ViC
E2 T1* 01-26 01-31 10311 Adjusted calibration of T1
E2 T2* 01-26 01-31 10292 Adjusted calibration of T2
E3 C 01-31 02-05 14086 Control, 4x Y/N Vocab Items, no ViC
E3 T3 01-31 02-05 13207 Same as T2* above with different down-

stream admin.
E3 T2* 01-31 02-05 13855 Same as T2* above
E4 C 02-12 02-16 7498 Control, 4x Y/N Vocab Items, no ViC
E4 T4 02-12 02-16 7021 Same as T2* above with different down-

stream admin.
E4 T2* 02-12 02-16 14118 Same as T2* above
E5 C 02-16 02-19 4834 Control, 4x Y/N Vocab Items, no ViC
E5 T5 02-16 02-19 4301 Y/N Vocab and ViC uses AutoIRT and

BanditCAT V1
E5 T6 02-16 02-19 8638 Y/N Vocab and ViC uses AutoIRT and

BanditCAT V1, different downstream ad-
min. from T5

Table 1: A description of the DET practice test experiments and their conditions.

sessions, what is the maximum frequency of an item being selected (fi) as a ratio of the total
number of administration events for items of that type.

4.3. Results Discussion

Table 2 gives the results of our experiments in the DET practice test. When it comes to
the Y/N Vocab and ViC sections, the treatment conditions do not differ substantially with
the exception of going from T1, T2 to T1∗, T2∗. In that case, the recalibration improved
scoring and administration thus increasing the reliability metrics. In general, the control
condition has significantly higher reliabilities and score correlations, but this is due to the
fact that it has 4x the number of items as the treatment. We see that the loss in reliability
for Y/N vocab when we reduce the number of items from 72 to 18 does not result in a
similar loss of reliability (which we would expect to roughly half). Similarly, the drop in
score correlations is not as significant as we might expect given the dramatic reduction in
the number of items. We see that we were very effectively able to control exposure, since we
did not see a significant change from the control condition.

While there is no control comparison for the ViC item type, we see that with 9 items we
get a reliability of 0.66, which exceeds that for the 18 Y/N vocab items. It should be noted
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Experiment Cond. Task RR Score Corr. Max exposure
E1 C Y/N Vocab 0.689 0.813 1.00%
E1 T1 Y/N Vocab 0.535 0.723 0.56%
E1 T2 Y/N Vocab 0.550 0.733 0.57%
E2 C Y/N Vocab 0.724 0.824 0.98%
E2 T1* Y/N Vocab 0.579 0.752 0.65%
E2 T2* Y/N Vocab 0.587 0.753 0.67%
E3 C Y/N Vocab 0.722 0.825 0.95%
E3 T3 Y/N Vocab 0.571 0.743 0.64%
E3 T2* Y/N Vocab 0.567 0.758 0.61%
E4 C Y/N Vocab 0.713 0.821 0.91%
E4 T4 Y/N Vocab 0.538 0.748 0.74%
E4 T2* Y/N Vocab 0.543 0.741 0.74%
E5 C Y/N Vocab 0.713 0.802 0.97%
E5 T5 Y/N Vocab 0.535 0.738 0.66%
E5 T6 Y/N Vocab 0.552 0.759 0.64%
E5 T5 ViC 0.659 0.737 1.10%
E5 T6 ViC 0.661 0.742 1.01%

Table 2: Reliability, validity, and exposure results of DET practice test experiments. We
have bolded the maximum metrics for Y/N Vocab, ViC tasks, and control (for Y/N
Vocab). All metrics listed are not reflective of the DET certified test or the current
version of the practice test.

that the combination of these two item type scores will get significantly higher reliability
(0.8 for E5-T6 for the average scores). The original time allotted to vocabulary items in the
control condition is 4 minutes. The time allotted for Y/N Vocab and ViC combined is 4:30,
yet there is a very substantial total reliability increase.

5. Conclusions

This work demonstrates a general approach to calibrating and administering an adaptive
test with minimal responses and limited modeling effort. It outlines the AutoIRT method
for obtaining item parameter estimates from complex item features, as well as foundation
model embeddings. Specifically, we use the RoBERTa embeddings for items that contain
passages (vocabulary-in-context). We also introduce the BanditCAT framework, which casts
computerized adaptive tests in the contextual bandit setting. We provide an algorithm that
is a first attempt at using this framework, BanditCAT V1 — a Thompson sampling approach
to test administration.

While this paper does introduce the BanditCAT framework, BanditCAT V1 is just the
first algorithm that utilizes this approach. However, this algorithm does not address a few
major issues that plague adaptive testing. First, it is not a complete Thompson sampling
algorithm because it does not also sample the item parameters from a posterior distribution.
Because this is another critical source of uncertainty in the reward model (Fisher information),
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this would improve the balance between exploration and exploitation. Second, the method
for exposure control is specific to the 2PL and 3PL IRT models, a general purpose exposure
control would extend this approach to other IRT models. Third, this model only supports
unidimensional θ, and to extend this problem to multidimensional θ would require additional
modifications. This work is a precursor to a more complete treatment that addresses these
issues.
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